

A (very) brief history of cryptography

Broken?

Monoalphabetic cipher	invented ~50 BC (J. Caesar)	~850 (Al-Kindi)
Nomenclators (code books)	~1400 - ~1800	\checkmark
Polyalphabetic (Vigenère)	1553 - ~1900	1863 (F. W. Kasiski)
•••		
One-time pad	invented 1918 (G. Vernam)	impossible (C. Shannon 1949)
Polyalphabetic electromechanical (Enigma, Purple, etc.)	1920s – 1970s	\checkmark
•••		
DES	1977 – 2005	1998: 56 h (EFF)
Public-key crypto (RSA, elliptic-curv	re) 1977 –	will be once we have q. computer (P. Shor 1994)
AES	2001 —	?
Quantum cryptography	invented 1984, in developmer	impossible*
Public-key crypto ('quantum-safe')	in development	?

Implementation security of quantum communications

physically secure, characteristics known physically secure, characteristics known

Kerckhoffs' principle:

Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi

A. Kerckhoffs, J. des Sciences Militaires 9, 5 (1883)

Everything about the system that is not explicitly secret is known to the enemy

Attack	Target component	Tested system
Distinguishability of decoy states A. Huang <i>et al.,</i> Phys. Rev. A 98 , 012330 (2018)	laser in Alice	3 research systems
Intersymbol interference K. Yoshino <i>et al.,</i> poster at QCrypt (2016)	intensity modulator in Alice	research system
Laser damage V. Makarov <i>et al.</i> , Phys. Rev. A 94 , 030302 (2016); A. Huar Spatial efficiency mismatch M. Rau <i>et al.</i> , IEEE J. Sel. Top. Quantum Electron. 21 , 660	any ng <i>et al.,</i> poster at QCrypt (2018) receiver optics 0905 (2015); S. Sajeed <i>et al.,</i> Phys. F	5 commercial & 1 research systems 2 research systems Rev. A 91 , 062301 (2015)
S. Sajeed <i>et al.,</i> Phys. Rev. A 91 , 032326 (2015)	classical watchdog detector	ID Quantique
Trojan-horse I. Khan <i>et al.,</i> presentation at QCrypt (2014)	phase modulator in Alice	SeQureNet
Trojan-horse N. Jain <i>et al.,</i> New J. Phys. 16 , 123030 (2014); S. Sajeed	phase modulator in Bob et al., Sci. Rep. 7 , 8403 (2017)	ID Quantique
Detector saturation H. Qin, R. Kumar, R. Alleaume, Proc. SPIE 88990N (2013)	homodyne detector	SeQureNet
Shot-noise calibration P. Jouguet, S. Kunz-Jacques, E. Diamanti, Phys. Rev. A 87	classical sync detector 7, 062313 (2013)	SeQureNet
Wavelength-selected PNS MS. Jiang, SH. Sun, CY. Li, LM. Liang, Phys. Rev. A &	intensity modulator 36, 032310 (2012)	(theory)
Multi-wavelength HW. Li <i>et al.,</i> Phys. Rev. A 84 , 062308 (2011)	beamsplitter	research system
Deadtime H. Weier <i>et al.,</i> New J. Phys. 13 , 073024 (2011)	single-photon detector	research system
Channel calibration N. Jain <i>et al.,</i> Phys. Rev. Lett. 107 , 110501 (2011)	single-photon detector	ID Quantique
Faraday-mirror SH. Sun, MS. Jiang, LM. Liang, Phys. Rev. A 83, 06233	Faraday mirror 31 (2011)	(theory)
Detector control I. Gerhardt <i>et al.,</i> Nat. Commun. 2 , 349 (2011); L. Lyderser	single-photon detector n <i>et al.,</i> Nat. Photonics 4 , 686 (2010)	ID Quantique, MagiQ research systems

Example of vulnerability and countermeasures

Photon-number-splitting attack

C. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, J. Cryptology 5, 3 (1992)

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000)

N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000)

S. Félix, N. Gisin, A. Stefanov, H. Zbinden, J. Mod. Opt. 48, 2009 (2001)

N. Lütkenhaus, M. Jahma, New J. Phys. 4, 44 (2002)

Decoy-state protocol

W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003)

★ SARG04 protocol

V. Scarani, A. Acín, G. Ribordy, N. Gisin, Phys. Rev. Lett. 92, 057901 (2004)

Distributed-phase-reference protocols

K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. Lett. 89, 037902 (2002)

K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. A. 68, 022317 (2003)

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, V. Scarani, arXiv:quant-ph/0411022v1 (2004)

Attenuated laser source

S. J. van Enk, C. A. Fuchs, arXiv:quant-ph/0111157

True randomness?

True randomness?

Issue reported patched in 2010

Do we trust the manufacturer?

Many components in QKD system can be Trojan-horsed:

- access to secret information
- electrical power
- way to communicate outside or compromise security

ID Quantique Clavis2 QKD system

Photo ©2008 Vadim Makarov. Published with approval of ID Qiantique

Double clicks

– occur naturally because of detector dark counts, multi-photon pulses... Discard them?

Intercept-resend attack... with a twist:

Proper treatment for double clicks: assign a random bit value.

N. Lütkenhaus, Phys. Rev. A **59**, 3301 (1999) T. Tsurumaru & K. Tamaki, Phys. Rev. A **78**, 032302 (2008)

Trojan-horse attack

 interrogating Alice's phase modulator with powerful external pulses (can give Eve bit values directly)

Trojan-horse attack for plug-and-play system

Eve gets back one photon \rightarrow in principle, extracts 100% information

N. Gisin et al., Phys. Rev. A 73, 022320 (2006)

Trojan-horse attack experiment

Draft security standard @ ETSI: Trojan-horse in one-way system

M. Lucamarini et al., Phys. Rev. X 5, 031030 (2015)

Attack example: avalanche photodetectors (APDs)

Faked-state attack in APD linear mode

Blinding APD with bright light

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photonics 4, 686 (2010)

Proposed full eavesdropper

Note: Intercept-resend always breaks QKD security

M. Curty, M. Lewenstein, N. Lütkenhaus, Phys. Rev. Lett. 92, 217903 (2004)

Eavesdropping 100% key on installed QKD line on campus of the National University of Singapore, July 4–5, 2009

Controlling superconducting nanowire single-photon detectors

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, V. Makarov, New J. Phys. **13**, 113042 (2011) M. G. Tanner, V. Makarov, R. H. Hadfield, Opt. Express **22**, 6734 (2014)

Countermeasures to detector attacks?

A. Ekert, Phys. Rev. Lett. 67, 661 (1991); C. H. Bennett et al., Phys. Rev. Lett. 68, 557 (1992)

Measurement-device-independent QKD

H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012)