SECOQC QIT Workshop. Erlangen, September 13–17, 2004

Attacks via optical loopholes

Vadim Makarov

www.vad1.com/qcr/

NTNU

Norwegian University of Science and Technology

Trondheim

Components of security

- 1. Conventional security; trusted equipment manufacturer
- **2. Security against quantum attacks**
- **3. Loopholes in optical scheme**

D NTNL

 attacks that don't deal with quantum states, but use loopholes and imperfections in implementation

• Large pulse attack

- Light emission from APDs
- Faked states attack passive basis choice
- Faked states attack active basis choice

Large pulse attack

 interrogating Alice's phase modulator with powerful external pulses (can give Eve bit values directly)

[A. Vakhitov, V. Makarov, and D.R. Hjelme, "Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography," J. Mod. Opt. **48**, 2023-2038 (2001)].

Typical values of reflection coefficients for different fiber-optic components (courtesy Opto-Electronics, Inc.)

Large pulse attack: eavesdropping experiment

Artem Vakhitov tunes up Eve's setup (2000)

Interrogating Bob's modulator

PNS-resistant protocol and large pulse attack

States configuration for a QKD protocol robust to PNS attack (other name: "SARG protocol"):
(a) two pairs of non-orthogonal states on the equator of the Poincare sphere, physically equivalent to the states used in the BB84 protocol; (b) bit encoding in a protocol using four bases
[A. Acin, N. Gisin, and V. Scarani, "Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks," Phys. Rev. A 69, 012309 (2004)]. Unfortunately, measurement bases at Bob directly represent bit values.
NTNU

Protection measures

Scheme	Protocols	Protection		
		at Alice	at Bob	*
Townsend's	BB84	Passive (attenuator +isolator)	Passive (delay)	Yes
	B92, PNS-resistant		Active (detector)	
"Plug & Play"	BB84	<mark>Active</mark> (detector)	Passive (delay)	Yes
	B92, PNS-resistant		Active (detector)	

*Eve granted quantum memory (in reality she could use bases detection on Bob's side, not needing long storage)

Passive (attenuator+isolator)

Active (detector)

Light emission from APD

 Detect light emitted from single photon detector – avalanche photo diode (APD) – during avalanche, get bit value

Light emission from APDs

Hot-carrier luminescence in avalanching junction:

- No single agreed-upon model of the process
- Studied only in Si devices, only down to 1.1 μm

The only study in application to information leakage:

[C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, "The breakdown flash of silicon avalanche photodiodes – back door for eavesdropper attacks?" J. Mod. Opt. 48, 2039-2047 (2001).

Faked states attack

Conventional intercept/resend:

Faked states attacks...

are described in [Vadim Makarov and Dag R. Hjelme, "Faked states attack on quantum cryptosystems," Journal of Modern Optics (to be published, 2004)]

on the example of Geneva group's entanglement-based QKD system [G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, "Long-distance entanglement-based quantum key distribution," Phys. Rev. A **63**, 012309 (2001)].

1. Basis choice via polarization

1. Basis choice via polarization

'Eve could devise a strategy where she could benefit from forcing detection of a given qubit in a particular basis, [so] we must introduce a polarizer aligned at 45° or a polarization scrambler in front of the PBS.'

1. Basis choice via polarization

'Eve could devise a strategy where she could benefit from forcing detection of a given qubit in a particular basis, [so] we must introduce a polarizer aligned at 45° or a polarization scrambler in front of the PBS.'

2. Basis choice via timing using reflections off optical interfaces

3. Basis choice via timing using non-overlapping parts of detection window

Protection measures against attacks 1–3

4. Incapacitation of monitoring detector

Modern classical cryptography:

"Security depends on key, not on algorithm."

Quantum cryptography:

"Security depends on physics, not on equipment."

Assume equipment is known and accessible to Eve?..

A. Establishing optical connection

0

B. Finding the right attack parameters

Before attack:

• Study commercially available samples of equipment

After connecting to line:

- OTDR
- Probe the parameters of equipment by substituting *few* Alice's pulses with faked states at first. Watch the public discussion for those bits substituted. Accumulate statistics.

Then, switch to substituting every pulse.

- Large pulse attack
- Light emission from APDs
- Faked states attack passive basis choice

Eve's attack is not detected
 Eve obtains 100% information of the key
 NTNU

QKD setup in Trondheim

Detector sensitivity curves. Probing pulse 100 ps FWHM

(Possible) ideal case

Non-ideal case

We want detector data from other setups!

- Measurements of detector sensitivity curves from other QKD setups will help understand and quantify the problem
- This is a very simple measurement:
 count rate vs. time of incoming pulse

- The probing pulse <u>preferably</u> need be as short as possible, down to <30 ps
- Use small time increments; measure tails

- Large pulse attack
- Light emission from APDs
- Faked states attack passive basis choice
- Faked states attack active basis choice

Optional slides

Interferometer structure (setup in Trondheim)

Quantum key distribution: phase coding

 \Box NTNU