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Several attacks have been proposed on quantum key distribution systems with gated single-photon detectors.
The attacks involve triggering the detectors outside the center of the detector gate, and/or using bright illumination
to exploit classical photodiode mode of the detectors. Hence a secure detection scheme requires two features:
The detection events must take place in the middle of the gate, and the detector must be single-photon sensitive.
Here we present a technique called bit-mapped gating, which is an elegant way to force the detections in the
middle of the detector gate by coupling detection time and quantum bit error rate. We also discuss how to
guarantee single-photon sensitivity by directly measuring detector parameters. Bit-mapped gating also provides
a simple way to measure the detector blinding parameter in security proofs for quantum key distribution systems
with detector efficiency mismatch, which up until now has remained a theoretical, unmeasurable quantity. Thus if
single-photon sensitivity can be guaranteed within the gates, a detection scheme with bit-mapped gating satisfies
the assumptions of the current security proofs.
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I. INTRODUCTION

Quantum mechanics allows two parties, Alice and Bob,
to grow a random, secret bit string at a distance [1–4]. In
theory, the quantum key distribution (QKD) is secure, even if
an eavesdropper Eve can do anything allowed by the currently
known laws of nature [5–9].

In practical QKD systems there will always be imperfec-
tions. The security of QKD systems with a large variety of
imperfections has been proved [5,10–17]. Device-independent
QKD tries to minimize the number of assumptions on the
system, but unfortunately the few assumptions [2,18,19] in
the security proofs seem to be too strict to allow useful
implementations [20] with current technology [21].

Several security loopholes caused by imperfections have
been identified, and attacks have been proposed and in
some cases implemented [15,22–34]. With notable exceptions
[22,23,27,30,33], most of the loopholes are caused by an
insufficient model of the detectors.

While several detection schemes exist, most implementa-
tions use avalanche photodiodes (APDs) gated in the time
domain to avoid a high rate of dark counts. Gated means that
the APD is single-photon sensitive only when a photon is
expected to arrive in a time window called the detector gate.
Attacks on these detection schemes are based on exploiting
the classical photodiode mode of the APD, or the detector
response at the beginning and/or end of the detector gate.

In the attacks based on the classical photodiode mode of
the APD, the detectors are triggered by bright pulses [28,31].
If necessary, the APDs can be kept in the classical photodiode
mode, in a so-called blind state, using additional bright
background illumination [28,29,31,34,35]. When the detectors
are blind, they are not single-photon sensitive any more, but
only respond to bright optical trigger pulses. In most gated
systems, blinding is not necessary because the APDs are in
the classical photodiode mode outside the gates. Therefore, in
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the after-gate attack [36], the trigger pulses are simply placed
after the gate.

Several attacks are based on detector efficiency mismatch
(DEM) [24]. If Bob’s apparatus has DEM, Eve can control
the efficiencies of Bob’s detectors individually, by choosing
a parameter t in some external domain. Examples of such
domains can be the timing, polarization, or frequency of the
photons [14,24]. As an example, consider DEM in the time
domain. Usually Bob’s apparatus contains two single-photon
detectors to detect the incoming photons, one for each bit
value. Owing to different optical path lengths, inaccuracies
in the electronics, and finite precision in detector manufac-
turing, the detection windows and hence the efficiency curves
of the two detectors a and b are slightly shifted, as seen in
Fig. 1(a). Several attacks exploit DEM [15,24,25] in various
protocols [37], some of which are implementable with current
technology. The time-shift attack [25] has been used to gain an
information-theoretical advantage for Eve when applied to a
commercially available QKD system [32]. In the experiment,
Eve captured partial information about the key in 4% of her
attempts, such that she could improve her search over possible
keys.

After each loophole has been identified, effort has been
made to restore the security of the detection schemes. DEM is
now included in the receiver model of several security proofs
[14,15,17] as an efficiency mismatch or blinding parameter η,
defined differently according to the generality of the proof. For
arbitrary systems that can be described with linear optics [15],

η = mint {ηa(t),ηb(t)}
maxt {ηa(t),ηb(t)} , (1)

where ηa(t) and ηb(t) are the detection efficiencies of the
two detectors. Here t labels the different optical modes; in
the special case without mode coupling it labels the different
temporal modes. An example is given in Fig. 1(a). In the
most general case η is given by the lowest probability that a
nonvacuum state incident to Bob is detected [17]. For either
definition of η, there is an infinite number of modes involved
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FIG. 1. (Color online) Bit-mapped gating. (a) Detector gates with
DEM. ηa(t) (blue, dashed) and ηb(t) (red, solid) are the efficiencies
of the two detectors a and b with respect to time t . (b),(c) Possible
optical bit mapping (teal) when the software bit mapping is set to
a → 0, b → 1 (b) and a → 1, b → 0 (c). In a phase-encoded system
the two levels would correspond to 0 and π phase shift in one basis,
and π/2 and 3π/2 phase shift in the opposite basis. Note that software
bit mapping and optical bit mapping coincide in the bit-mapped gate,
which is well within the detector gates. (d) QBERmin(t) (green) as
obtained from (8) with the bit-mapped gate shown in (b) and (c).

(all superpositions of temporal modes [15]), which makes the
blinding parameter difficult to measure or bound in practice.
For a given value of η, the secret key rate is given by [17]

R � −h(E) + η[1 − h(E)], (2)

where E is the quantum bit error rate (QBER) measured
by Alice and Bob, and h(·) is the binary Shannon entropy
function. Here we have assumed symmetry between the bases
in the protocol; in addition, we have ignored any basis
leakage from Alice and back reflection from Bob (the most
general expression is given in the original reference [17]).
Unfortunately, in practical systems the rate (2) will usually be
zero, because η → 0 owing to the edges of the detector gates.
For the commercial QKD system subject to the time-shift

attack, η < 0.01 [estimated from the curves in Fig. 3 of
Ref. [32] using Eq. (1)].

As noted in Ref. [15], one way of obtaining a better η would
be to discard pulses near the edge of the detector gate. Then
η could be calculated from (1) including only the modes t

that are accepted as valid detections. However, this is highly
nontrivial. The avalanche in an APD is a random process, and
the jitter in the photon-timing resolution is of the same order
of magnitude as the duration of the detector gate. A good
photon-timing resolving detector still has 27-ps jitter [38].
Furthermore, the unavoidable difference in the acceptance
windows for the different detectors will also contribute to
DEM (one detector accepts clicks while the other discards
them).

A frequently mentioned countermeasure for systems with
DEM is called four-state Bob [24,25,39,40]. Then Bob uses
a random detector–bit mapping, randomly assigning the bit
values 0 and 1 to the detectors a,b for each gate. In a
phase-encoded QKD system, this can be implemented by Bob
choosing from four different phase settings {0,π/2,π,3π/2}
instead of only two {0,π/2}. Then Eve does not know
which detector characteristics correspond to which bit value.
However, as mentioned previously [15,24,25], this patch does
not close the loophole. Eve may use a Trojan-horse attack
[22,23,41,42] to read Bob’s phase modulator settings. While
Alice’s system is usually secured against the Trojan-horse
attack by the optical attenuator at her entrance, this solution
will not work for Bob’s system because the attenuator would
also absorb nearly all the single photons from Alice. Note
also that the four-state Bob patch does not secure against
the after-gate attack [36] nor any of the detector control
attacks [31,35].

Here we present a novel way of securing Bob’s receiver
called bit-mapped gating (Sec. II). It secures the system against
all kinds of pulses outside the central part of the detector gate
in the Bennett-Brassard 1984 (BB84) and related protocols
[1,43–45]. The technique is compatible with the existing
security proofs [14,15,17] and makes it simple to find η.
In general, it represents a useful concept, where parameters
from characteristics of the QKD system are coupled to the
parameters estimated by the protocol. In this case η becomes
coupled to the QBER. Subsequently we analyze the security
of bit-mapped gating (Sec. III), discuss how to characterize
detectors, and how to implement a guarantee of single-photon
sensitivity (Sec. IV). Finally we conclude (Sec. V).

II. BIT-MAPPED GATING

Let us start with two definitions. Software bit mapping
determines how the signals from detectors a and b are mapped
into the logical bits 0, 1. Similarly, optical bit mapping, which
can be implemented by generalizing the basis selector, maps
quantum states with bit values 0,1 (for instance, |0〉,|1〉 in the
Z basis) to the detectors a,b. Note that if software bit mapping
and optical bit mapping do not coincide, the bit value 0 sent
by Alice will be detected as the bit value 1 by Bob.

Bit-mapped gating works as follows:
(1) Somewhere in between the detector gates, Bob randomly

selects software bit mapping, assigning detectors a,b to bit
values 0,1.
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(2) Likewise, the basis is selected randomly between the X

and Z basis, along with random optical bit mapping. Because
this happens between the detector gates, jitter is not critical.

(3) Inside the detector gate, optical bit mapping is matched
to software bit mapping. The period with matching optical and
software bit mapping is the bit-mapped gate.

Note that optical bit mapping can be equal on both sides of
the bit-mapped gate to minimize the need for random numbers.
Figure 1 shows a typical time diagram.

As an example, consider a phase-encoded implementation
of the BB84 protocol, where the basis selector at Bob is usually
a phase modulator. The zero-phase shift corresponds to the
Z basis and the π/2 phase shift corresponds to the X basis.
Optical bit mapping can be selected by adding either 0 or π to
the phase shift. Hence in this implementation the bit-mapped
gating patch could be implemented as follows: Bob randomly
selects software bit mapping somewhere between the gates.
Furthermore, Bob selects a random basis, i.e., 0 or π/2 phase
shift between the gates, and adds either 0 or π to the phase
shift to apply the random optical bit mapping. During the gate,
the software and optical bit mapping coincide.

All states received and detected outside the bit-mapping
gate cause random detection results (owing to the random
optical and software bit mapping), and thus introduce a QBER
of 50%. The measured QBER could be used to estimate the
fraction of detections that must have occurred in the center of
the gate (in Fig. 1: Close to zero QBER would mean that most
detection events must have passed the basis selector, and thus
hit the detector, in the middle of the gate). This can be used
to limit the DEM, because considering only the modes in the
center of the detector gate gives less DEM than considering
all modes.

III. SECURITY ANALYSIS

The goal of this section is to derive an expression for the
minimum QBER introduced by any state received by Bob,
during the transition to and from the bit-mapped gate. Ideally,
the minimum QBER is 0 inside the bit-mapped gate, and 1/2
outside the bit-mapped gate.

The input of Bob’s detection system consists of many
optical modes t , for instance, corresponding to different arrival
times at Bob’s system. Each mode t may contain a mixture of
different number states. Note that Bob could have measured
the photon number in each mode without disturbing the later
measurement; thus it suffices to address specific number states.
We use the usual assumption that each photon in a n-photon
state is detected individually. Under these assumptions, we
first calculate the minimum QBER caused by a single photon
arriving in a single mode at Bob. Then, in the Appendix, we
show that multiple photons in this mode, or photons in other
modes, can only increase the minimum QBER.

Consider a single photon arriving at Bob in a given mode t .
Because the BB84 protocol is symmetric with respect to the
bit values and the bases, we may assume without loss of
generality that Alice sent Z0 and that Bob measures in the
Z basis. Outside the bit-mapped gate, Bob performs four
different measurements depending on the software and optical
bit mapping. For each measurement, Bob will obtain one out of

three measurement outcomes, bit 0, bit 1, or vacuum denoted
by subscript v.

Let ηa,ηb be the efficiencies of the two detectors, |θ〉 =
cos θ |0〉 + sin θ |1〉 and |θ⊥〉 = sin θ |0〉 − cos θ |1〉. During a
bit-mapped gate, θ is varied from 0 to π/2. For each value of
θ , Bob performs one out of the four measurements,

M0 = ηa|0〉〈0|, M1 = ηb|1〉〈1|,
(3a)

Mv = I − M0 − M1,

M ′
0 = ηb|0〉〈0|, M ′

1 = ηa|1〉〈1|,
(3b)

M ′
v = I − M ′

0 − M ′
1,

M ′′
0 = ηa|θ〉〈θ |, M ′′

1 = ηb|θ⊥〉〈θ⊥|,
(3c)

M ′′
v = I − M ′′

0 − M ′′
1 ,

M ′′′
0 = ηb|θ〉〈θ |, M ′′′

1 = ηa|θ⊥〉〈θ⊥|,
(3d)

M ′′′
v = I − M ′′′

0 − M ′′′
1 .

If Bob uses the four measurements with equal probabil-
ities, the statistics will be given by using the measurement
operators,

E0 = 1
4 (M0 + M ′

0 + M ′′
0 + M ′′′

0 )

= 1
4 (ηa + ηb)[(1 + cos2 θ )|0〉〈0| + sin2 θ |1〉〈1|
+ sin θ cos θ (|0〉〈1| + |1〉〈0|)], (4a)

E1 = 1
4 (M1 + M ′

1 + M ′′
1 + M ′′′

1 )

= 1
4 (ηa + ηb)[sin2 θ |0〉〈0| + (1 + cos2 θ )|1〉〈1|
− sin θ cos θ (|0〉〈1| + |1〉〈0|)], (4b)

Ev = 1
4 (Mv + M ′

v + M ′′
v + M ′′′

v )

=
(

1 − ηa + ηb

2

)
I. (4c)

Note that Ev ∝ I , so the detection probability is indepen-
dent of the photon state ρ:

pdet = 1 − Tr[ρEv] = ηa + ηb

2
. (5)

The eigenvalues of operators E0 and E1 are given by
pdet(1 ± cos θ )/2. Thus the minimum and maximum proba-
bility of detecting bit values 0 and 1 for any single photon sent
by Eve is given by

p0, min = p1, min = pdet

2
(1 − cos θ ), (6)

p0, max = p1, max = pdet

2
(1 + cos θ ). (7)

Because Alice sent Z0, the minimum QBER introduced by a
single photon is given by

QBERmin = p1, min

pdet
= 1

2
(1 − cos θ ). (8)

As expected, for θ = π/2, QBERmin = 1/2. For multiphotons,
a random bit value is assigned to double clicks [10,16].
The Appendix shows that sending multiple photons can only
increase the QBER caused by detection events. Hence Eq. (8)
gives the minimum QBER for any photonic state sent by Eve.
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The security proofs in Refs. [14,15,17] involve Bob
predicting the results of Alice’s virtual X-basis measurement.
Because the prediction is not carried out in practice, Bob can
perform any operation permitted by quantum mechanics. In
the proofs Bob’s prediction consists of a filter followed by
an “X-basis” measurement. When nothing is known about the
distribution of the detection events within the gate, the worst-
case assumption is that all the detection events occur with
maximum DEM. Therefore, the best filter we can construct can
only guarantee that a fraction η of the inputs can successfully
pass the filter.

With our patch, we may use the QBER to determine a
lower bound for the number of detection events which must
have occurred in the central part of the detector gate. Assuming
that t labels temporal modes, consider the number of detection
events that occurred in the range where QBERmin < E′ (see
Fig. 2). Here, E′ is a threshold selected by Bob. Let η′ be
the blinding parameter for the modes for the range where
QBERmin < E′. It can be calculated from Eq. (1), but where t

only runs over this range. If the measured QBER is equal to
E, a fraction

f = E′ − E

E′ (9)

must have been detected in the modes where QBERmin < E′.
Note that increasing E′ increases f , and may decrease η′ (see
Fig. 2). As will become apparent below, E′ should be selected
to maximize f η′.

For decoy protocols [43–45], E should be replaced with the
QBER estimated for single-photon states. This improves the
estimate of the fraction f , especially for large distances where
the dark counts become a major part of the total QBER.

In the worst case, a fraction f experienced a reduced
DEM η′. Therefore, the filters in the security proofs can be
replaced as follows: The new filter discards pulses in the

ηb(t)ηa(t)

Detector efficiency

Time
QBERmin

0

0.5

Time

E

FIG. 2. (Color online) Curves (a) and (d) from Fig. 1. The dashed
line shows how a threshold E′ can be used to limit the range of modes
t used to calculate or bound η′.

modes for which QBERmin > E′. For the modes inside the
bit-mapped gate, where QBERmin < E′, the new filter reverts
the quantum operation from the receiver in the opposite basis
in the same way that the old filter reverted it for all modes, but
now having a success rate η′. Because we can guarantee that
a fraction f of the photons are in the bit-mapped gate, at least
f η′ pulses will successfully pass the new filter. Therefore the
parameter η in all the proofs [14,15,17] can be replaced with
f η′, and the rate (2) becomes

R � −h(E) + f η′[1 − h(E)], (10)

when one assumes symmetry between the bases, and no source
errors. Without symmetry between the bases, all parameters
become basis dependent, and the rate is the sum of the rates in
each basis.

Let us see how bit-mapped gating could improve the secure
key rate for the commercial QKD system in Ref. [32]. For
this system, η < 0.01. In the same experiment, the QBER is
measured to be 5.68%. Assuming E′ = 0.45 and η′ = 0.9, f η′
becomes 0.79, thus a substantial improvement. In fact, the rate
obtained from Eq. (2) without the patch is 0, while the rate
obtained from Eq. (10) is 0.227, so clearly the patch can be
used to resecure an insecure implementation.

IV. DETECTOR DESIGN AND CHARACTERIZATION

When designing Bob’s system, one should ensure that the
bit-mapped gate is well within the detector gate, i.e., that
the detector efficiencies are approximately equal within the
bit-mapped gate. Then, it should be possible to measure or
bound the detector efficiencies and the basis selector response
θ (t) in the temporal domain. In a phase-encoded system this
would correspond to measuring the detector efficiencies and
the phase modulation as a function of time [46], over the
range of wavelengths and polarizations accepted by Bob. With
this data, the minimum QBER as a function of time can
be calculated from (8), and a diagram similar to Fig. 2 can
be obtained. After selecting an appropriate limit E′, η′ can be
calculated by (1) but where t runs only over the modes where
QBERmin < E′, and not over all available modes.

In general, there might be coupling between the differ-
ent temporal modes owing to misalignments and multiple
reflections [14,15]. The bit-mapped gate ensures that the
pulse passed the basis selector inside the temporal detector
gate, but does not guarantee the actual detection time. For
example, a pulse could pass in the center of the bit-mapped
gate, but afterwards take a multiple reflection path such that
it hits the detector outside the detector gate. This can be
handled by characterizing the worst-case mode coupling as
described previously [15]. Let δ be the worst-case (power)
coupling of modes inside the bit-mapped gate to outside the
gate. This will typically be the worst-case multiple-reflection
path after the basis selector, and should be boundable from
component characteristics. Then, the parameter δ can be

032306-4



SECURE GATED DETECTION SCHEME FOR QUANTUM . . . PHYSICAL REVIEW A 83, 032306 (2011)

interpreted as

δ = # pulses that hits the detector outside the gate

# pulses sent into the gate
. (11)

In the worst case, δ of the f detection events might have
happened outside the central part of the detector gate; thus one
must let f → f (1 − δ).

Finally one must guarantee that the detectors are not blind
within the gate [31], and fulfill the assumptions in Sec. III
during the transition of the optical bit mapping. Note that
the transition ends when there is no longer any correlation
between software bit mapping and optical bit mapping. If a
significant correlation exists also after the detector gate, it
could be exploited in the after-gate attack [36].

Although it is tempting to place an optical watchdog detec-
tor at the entrance of Bob, the absence of bright illumination
does not necessarily mean that the detectors are single-photon
sensitive. For instance, owing to the thermal inertia of the APD,
it can remain blind for a long time after the bright illumination
is turned off [35].

A cheap way to guarantee single-photon sensitivity is
to monitor all detector parameters [29], such as APD bias
voltage, current, and temperature. It seems difficult to monitor
the temperature of the APD chip [35], but monitoring the
bias voltage and current should make it possible to predict
the heat generated by the APD, and thus prevent thermal
blinding [35].

The ultimate way of guaranteeing single-photon sensitivity
is to measure it directly. This can be done by placing a
calibrated light source inside Bob that emits faint pulses at
random times [34] (see Fig. 3). Then the absence of detection
events caused by this source would indicate that the detector

C APD

LD

PMB

Bob

PBS

Short arm

Long arm
R

LD

Att.

DL

FIG. 3. (Color online) A calibrated light source inside Bob. The
figure shows the Bob module in a plug-and-play system [4,47–49],
which has two possible implementations of the calibrated light source:
either a separate attenuated laser diode (LD) at a suitable place, or
in the case of send-return systems where Bob already contains a
laser diode, a weakly reflective element (R) to reflect some light back
into the APDs. In one-way systems [3,50], Bob does not normally
contain any light source, therefore a separate laser diode would be the
only option. A short delay line (DL, delay > gate period/2) at Bob’s
input guarantees that Eve cannot interfere with the detector operation
based on whether the source is activated or not. PBS: polarizing
beam splitter; Att.: optical attenuator; PM: phase modulator; 50 : 50
fiber-optic coupler.

is blind. Further, a calibrated light source inside Bob could be
useful in more ways, for instance, to characterize and calibrate
detector performance in deployed systems.

The patch could cause a minor reduction in QKD perfor-
mance compared to running an (insecure) system without the
patch. In particular, the detector gates might have to be longer
to contain the basis-selector gate. This would increase the dark
count rate, and thus limit the maximum transmission distance.
A calibrated light source inside Bob would also cause a minor
reduction in the performance because the gates used for testing
the detector sensitivity likely cannot be used to extract the
secret key. However, both these effects are minor, and are
easily justified by the restoration of security.

V. DISCUSSION AND CONCLUSION

In this work, we have presented a technique called “bit-
mapped gating” to secure gated single-photon detectors in
QKD systems. It is based on a general concept where hardware
imperfections are coupled to the parameters estimated by
the protocol. Bit-mapped gating causes all detection events
outside the central part of the detector gate to cause high
QBER.

Bit-mapped gating is compatible with the current se-
curity proofs for QKD systems with detector efficiency
mismatch [14,15,17]. In particular, it provides a simple
way of measuring the detector blinding parameter. A secure
gated detection scheme is obtained if bit-mapped gating
is combined with detectors guaranteed to be single-photon
sensitive.

ACKNOWLEDGMENT

Financial support is acknowledged from the Research
Council of Norway (Grant No. 180439/V30).

APPENDIX: MINIMUM QBER FOR MULTIPHOTONS

Here we prove that the minimum QBER can only increase
when the number of photons sent to Bob is increased. As noted
previously, we use the usual assumption that each photon in a
n-photon state is detected individually. This means that each
photon hits a separate set of detectors, and then the detection
results are merged to give the detection results of threshold
detectors.

Let us first consider the case where Bob receives a large
number of two-photon states. Let the two photons within the
states be labeled 1 and 2. Individually, each of the two photons
would have caused the minimum QBER Q1 and Q2 [as found
from Eq. (8)]. Again we assume that Alice sends the bit value 0,
without loss of generality. For two-photon states there will be
three cases of detected events: either only photon 1 is detected,
only photon 2 is detected, or both photons are detected (in our
model, this latter possibility corresponds to the case where both
sets of detectors register a click). Let there be n1 events where
only photon 1 was detected, n2 events where only photon 2 was
detected, and c events where both photons were detected. For
photon i, out of the ni = ni,0 + ni,1 events, ni,0 and ni,1 were
detected as the bit value 0 and 1, respectively. Likewise, out
of the c = ci,0 + ci,1 events where both photons are detected,
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ci,0 and ci,1 were detected as the bit value 0 and 1 for photon
i (remember that in the model each photon hits a separate set
of detectors).

When only one of the photons is detected, the situation is
identical to the single-photon case treated in Sec. III. Hence
states such that Qi = ni,1/ni give the lowest possible QBER.
For the events where both photons are detected, the detections
can have any correlation, but for each photon ci,1 � cQi ,
because Qi represents the lowest fraction of the bit value 1
possible, regardless of the correlation with any other photon.
The total QBER Q can be found from merging the detections
from the two sets of detectors. Double clicks are assigned a
random bit value [10,16], therefore half of the double clicks

get the bit value 1. This gives the total QBER,

Q = n1,1 + n2,1 + 1
2 (c1,1 + c2,1)

n1 + n2 + c

�
Q1

(
n1 + c

2

) + Q2
(
n2 + c

2

)
n1 + n2 + c

� min(Q1,Q2). (A1)

By repeating the argument above, but replacing the detec-
tion of photon 1 with the detection of N photons, it is easy
to see that Q � min (QN,QN+1). Hence, by induction, any
detection event caused by more than one photon can only
cause a higher QBER than the single-photon case.
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