Seminar at AlbaNova University Center, Stockholm, October 23, 2008

Eve strikes back:^{*} attacks exploiting component imperfections

Vadim Makarov

*Title idea ©Claude Crépeau

Quantum cryptography timeline

- **1984** First key distribution protocol (BB84)
- 1989 Proof-of-the-principle experiment
- **1993** Key transmission over fiber optic link

2004 First commercial offers (20~50 km fiber links)
2007 200 km in fiber, 144 km free-space demonstrated
Market? And, what's the *real* level of security?

Our friend, Eve ...

Slide courtesy Norbert Lütkenhaus

What Vadim does:

Waterloo

- find deviations of devices from model assumptions
- actively intrude devices via optical fibers!
- manipulate devices (blind, burn detectors)

Vadim's complices: Hoi-Kwong Lo, Antia Lamas-Linares, Christian Kurtsiefer

Eve strikes back!

Eve lost the battle in security proofs, but came back via loopholes.

Stealing an idea from Claude Crepeau's slides in a CIAR meeting

Slide courtesy Hoi-Kwong Lo

Loopholes

Large pulse attack

Detector efficiency mismatch

Control of passively-quenched detectors

Control of PerkinElmer actively-quenched detector

Large pulse attack

 interrogating Alice's phase modulator with powerful external pulses (can give Eve bit values directly)

Large pulse attack experiment

Artem Vakhitov tunes up Eve's setup

Example: plug-and-play system

Eve's photon number: $|\alpha|^2$

Protection against large pulse attack

- 1. Don't use modulators
- 2. Passive (attenuator+isolator)

3. Active (detector)

Faked states attack

Conventional intercept-resend:

J. Mod. Opt. 52, 691 (2005)

Detector efficiency mismatch

- Most quantum cryptosystems need at least two detectors.
- Efficiency of detectors depends on external parameters and is different for two detectors, due to finite manufacturing and alignment precision.

13

• External control parameters:

Example: Eve measured with basis Z (90°), obtained bit 1

(Eve resends the opposite bit 0 in the opposite basis X, shifted in time)

Example: Eve measured with basis Z (90°), obtained bit 1

Eve's attack is not detected

Eve obtains 100% information of the key

Example: pair of detectors for QKD

Example: time-multiplexed detector

Example: 144 km free-space experiment

A. Lamas-Linares, C. Kurtsiefer, Opt. Express 15, 9388 (2007)

Example: *id Quantique ID-500* commercial QKD system ²³ in worst 4% of automatic line length measurement cycles

Time-shift attack

Available bit rate at QBER=0, in symmetric case:

$$R = I(A:B|E) = h(\eta/(\eta+1))$$

B. Qi et al., Quant. Inf. Comp. 7, 73 (2007)

Solution: develop security proof for a quantified η

- [1] V. Makarov et al., Phys. Rev. A 74, 022313 (2006)
- [2] L. Lydersen, private communication
- [3] L. Lydersen, J. Skaar, arXiv:0807.0767
- [4] C.-H. F. Fung et al., arXiv:0802.3788
- [5] B. Qi et al., Quant. Inf. Comp. 7, 73 (2007)

Other protocols (DPSK, SARG04, Ekert): V. Makarov, J. Skaar, Quant. Inf. Comp. 8, 0622 (2008)

Control of passively-quenched detector. Detector saturation curves

Detector #1

Single-photon response:

Control intensity diagrams (for detector #1):

arXiv:0707.3987

Proposed attack

Example: ultrashort range QKD system

J. Duligall et al., "Quantum key distribution for consumer applications" (LPHYS08, July 2008)

Example: 144 km free-space experiment

R. Ursin et al., Nature Physics 3, 481 (2007); Phys. Rev. Lett 98, 010504 (2007)

Control of PerkinElmer actively-quenched detector

32

Control of PerkinElmer actively-quenched detector

Module Con Counting Module Compleur de photodule

222

F M CARON / FIGHINIE AU CANION

Pelectronic

Perkins

PerkinElmer detector reverse-engineered. Control method №4

arXiv:0809.3408

34

Bias voltage vs. parameters of bright pulses

Filled symbols: full control over detector

Control intensity diagrams

Proposed attack

Side effect: simultaneous clicks from control pulses, >70 kHz

- [1] C. Erven *et al.*, arXiv:0807.2289
- [2] V. Fernandez et al., IEEE J. Quantum Electron. 43, 130 (2007);
 - K. J. Gordon et al., Opt. Express 13, 3015 (2005); IEEE J. Quantum Electron. 40, 900 (2004)
- [3] X. Shan et al., Appl. Phys. Lett. 89, 191121 (2006)
- [4] K. J. Resch et al., Opt. Express 13, 202 (2005)
- [5] W. T. Buttler et al., Phys. Rev. Lett. 84, 5652 (2000); ibid. 81, 3283 (1998); Phys. Rev. A 57, 2379 (1998)

NewScientistTech

Laser cracks 'unbreakable' quantum communications

Quantum cryptography is supposed to be unbreakable. But a flaw in a common type of equipment used makes it possible to intercept messages without detection.

the physics arXiv blog

Loophole found in quantum cryptography photon detectors

If you're hoping to secure your data using quantum cryptography, you might want to find a shoulder to cry on.

quantum cryptography in-band attack

<u>quantum cryptography</u> is an emerging field, but low install base hasn't kept researchers from exploring attacks against it.

adressa.no | trondheim

Bryter seg inn i fremtidens krypteringsmetode

Fra et laboratorium på Gløshaugen bryter Vadim Makarov seg inn i fremtidens kommunikasjonskryptering.

9

Foto: KIM NYGÅRD

Med offentlig støtte og velsignelse forsøker Vadim Makarov og de fire kollegene hans å bryte seg gjennom datamurer som i teorien skal være ugjennomtrengelige.

B B C RADIO

Loopholes, and their patching status

Large pulse attack

- not much yet done to protect in practice
- Detector efficiency mismatch
 - have proofs, but not yet detectors with guaranteed η
- Control of passively-quenched detectors

 have vague ideas, not yet hack-proof detectors/Bob
- Control of PerkinElmer actively-quenched detector – just discovered

Is quantum cryptography secure?

Yes.

Testing for loopholes is normal, necessary practice.

Optional slides

Key distribution

Secure channel

- Secret key cryptography requires secure channel for key distribution.
- Quantum cryptography distributes the key by transmitting quantum states in open channel.

Quantum key distribution

Handling errors in raw key

Typical values of reflection coefficients for different fiber-optic components (courtesy Opto-Electronics, Inc.)

45

Quality of control (detector #1)

arXiv:0707.3987

46

Quality of control (detector #2)

