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ca. 1970

2004 First commercial offers

Concept (“money physically impossible

                 to counterfeit”)

...... Market?

1984 Key distribution protocol (BB84)

1989 Proof-of-the-principle experiment

1993 Key transmission over fiber optic link

Quantum cryptography timeline
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Encoder Decoder

Open (insecure)
channel

BobAlice

Key

Secure channel

MessageMessage

Encoded message

• Secret key cryptography requires secure channel

for key distribution.

• Quantum cryptography distributes the key

by transmitting quantum states in open channel.

Key distribution
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Retained bit sequence   1  –  –  1  0  0  –  1  0  0  –  1  –  0

Bob’s measurement   1  0  0  1  0  0  1  1  0  0  0  1  0  0

Bob’s detection basis

Alice’s bit sequence   1  0  1  1  0  0  1  1  0  0  1  1  1  0

Light source

Alice

Bob

Diagonal
detector basis

Horizontal-
vertical
detector basis

Diagonal
polarization filters

Horizontal-vertical
polarization filters

Image reprinted from article: W. Tittel, G. Ribordy, and N. Gisin, "Quantum cryptography," Physics World, March 1998

Quantum key distribution
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Quantum cryptography at NTNU

Fiber optic QKD setup

1. Optimal tracking of phase drift

2. Single photon detector

     with afterpulse blocking

Security against practical attacks

3. Large pulse attack: experiment

4. Faked states attack

5. Detector efficiency mismatch ”0"

”1"

t

BOB



7

QKD setup
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Photo 1. Alice (uncovered, no thermoisolation installed)
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Photo 2. Bob (uncovered, no thermoisolation installed)
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Tracking phase drift

To get phase accuracy ∆φ within  ±10° (QBERopt ∆ϕ < 1%),

no more than  N
a
 = ~ 200  detector counts per adjustment

are required.

   Optimally counted at   ±90°  points from the extreme of the

   interference curves.  Exact required number of counts

   where k is the number of standard deviations of not exceeding ∆φ.
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J. Appl. Opt. 43, 4385 (2004)
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Tracking phase drift

+π

–π

0

0 60 min
Time

J. Appl. Opt. 43, 4385 (2004)

To get phase accuracy ∆φ within  ±10° (QBERopt ∆ϕ < 1%),

no more than  N
a
 = ~ 200  detector counts per adjustment

are required.

   Experiment:  adjustment every 3 s, N
a
 = 230:
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Test of QKD in laboratory conditions

Test run No. 2

QBER =

.5.7% average
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Test run No. 1

best QBER
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tgate down to 1ns

Gate pulse rate = 20 MHz

VE

Vbias

VB

t

T=1/(Gate pulse rate)

tgate
–VAPD

Single photon detector:
avalanche photodiode in Geiger mode

APD: Ge FD312L

T=77K, QE=16%, DC=5·10 

–5

APD inside cryostatC = C
APD

Differential

amplifier

50 Ω coaxial cables

Gate pulse

generator Bias
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Afterpulse blocking

• In QKD systems, probability of detecting a photon per pulse is always

much lower than 1 (e.g., ~ 1/1000).  This makes afterpulse blocking

efficient, allowing without much loss in detection probability:

• In our QKD system:  20 MHz gate pulse rate

• In principle:  a few orders of magnitude faster gate pulse rate

–VAPD

Detector

output

Hold-off time: N pulses are blocked

after detecting avalanche

t

VB

t
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Hardware implementation of
afterpulse blocking
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Gate pulse
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RF switch
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Test of afterpulse blocking

APD: Ge FD312L

Gate pulse rate = 12 MHz

QE = 7%

T = 77K

Number of gate pulses blocked
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1. Conventional security; trusted equipment manufacturer

2. Security against quantum attacks
     – security proofs for idealized model of equipment

3. Loopholes in optical scheme
     – imperfections not yet accounted in the proof

Quantum key distribution:
components of security

2   3
11

Alice Bob
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Large pulse attack
Alice

Line

Attenuator

Alice’s
PC

Eve’s equipment

Phase
modulator

– interrogating Alice’s phase modulator with powerful

   external pulses (can give Eve bit values directly)
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Large pulse attack: experiment

Laser

4% reflection

Vmod

OTDR

Out

In

Fine length
adjustment

to get L1 = L2

L2

L1

Received
OTDR
pulse

Vmod, V4.1 8.20

Variable
attenuator

Alice

Phase
modulator

Eve

J. Mod. Opt. 48, 2023 (2001)
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Photo 3. Artem Vakhitov tunes up Eve’s setup
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Conventional intercept -resend:

Faked states attack:

(no alarm)

Faked states attack

J. Mod. Opt. 52, 691 (2005)
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”0"

”1"

t

BOB

Exploiting common imperfection:
detector gate misalignment

Phys. Rev. A 74, 022313 (2006)
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”0"

”1"

t

BOB

Laser pulse from Alice

Detector gate misalignment

Phys. Rev. A 74, 022313 (2006)
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”0"

”1"

t

BOB

Detector gate misalignment

Phys. Rev. A 74, 022313 (2006)
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”0"

”1"

t

BOB

Detector gate misalignment

Phys. Rev. A 74, 022313 (2006)
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”0"

”1"

t

Example: Eve measured with basis Z (90°), obtained bit 1

0°

BOB

��=0°

Detector gate misalignment

(Eve resends the opposite bit 0 in the opposite basis X, shifted in time)
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(Eve resends the opposite bit 0 in the opposite basis X, shifted in time)

”0"

”1"

t

Example: Eve measured with basis Z (90°), obtained bit 1

90°

BOB
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Detector gate misalignment
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Partial efficiency mismatch

� In the symmetric case (when η
1
(t
0
)/η

0
(t
0
) = η

0
(t
1
)/η

1
(t
1
) ),

     Eve causes less than 11% QBER if mismatch is larger than 1:15

A. Practical faked states attack:

B. General security bound (incomplete):

where
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Detector efficiency mismatch

• Detector efficiency mismatch is a problem for many

protocols and encodings: BB84 (considered above),

SARG04, phase-time, DPSK and Ekert protocols.

• Control parameter  t  that changes detector efficiencies

shall not be necessarily timing; it can be, e.g., wavelength

or polarization.

• The worst-case mismatch, no matter how small,

must be characterized and accounted for during

privacy amplification.

[quant-ph/0702262]
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Conclusion

• A phase tracking technique and detector with afterpulse

blocking were successfully developed.

(QKD was demonstrated with a very limited success.)

• Our group has built  unique expertise  in quantum

cryptanalysis of attacks via optical loopholes.

Several attacks have been proposed, studied in detail,

and protection measures suggested.
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Possible future research

• Continuing security studies beyond those presented in the

thesis; we have experimented with passively-quenched

Si APD; we are trying to incorporate detector efficiency

mismatch into general proof...  With sufficient financing,

a study of high-power damage can be attempted.

• Improving the QKD experiment, demonstrating it over

at least ~ 20 km distance. Performance of detector

and phase tracking can be more accurately characterized.

• The QKD field is abound with novel ideas that can be tried...
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Optional slides
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0.00 0.11

QBER

0

1
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Handling errors in raw key

R = 1 – 2 h(QBER)
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• MagiQ Tecnologies

USA

• id Quantique

Switzerland

Standard VPN router + QKD equipment for frequent key changes

Several other companies also have the QKD technology, but are not selling yet

Commercial offers (as of late 2006)
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Photo 4. Bob (left) and Alice (right), thermoisolation partially installed
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Typical values of reflection coefficients for different fiber-optic components

(courtesy Opto-Electronics, Inc.)
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( Eve’s basis = Bob’s basis )
is sufficient for eavesdropping

Alice

Eve’s       
basis          det. result

Bob

Incompatible basis –
discarded by Alice and Bob during sifting
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0 1η
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Not proven
(assumed insecure)

Insecure

0.0660

Secure
with reduced key rate

Security state of QKD system

(  reduced rate at QBER=0 line, too  )
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Trondheim

St. Petersburg


