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Quantum cryptography timeline

ca. 1970 Concept (“money physically impossible

1984
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to counterfeit”)

Key distribution protocol (BB84)

Proof-of-the-principle experiment
Key transmission over fiber optic link

First commercial offers

Market?



Key distribution

Alice Bob

Message Open (insecure)
channel

j% Encoder |—Encoded message| Decoder %j

Message

Secure channel

® Secret key cryptography requires secure channel
for key distribution.

¢ Quantum cryptography distributes the key
by transmitting quantum states in open channel.



Quantum key distribution
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Alice’s bitsequence 1 0110011001110
Bob’s detection basis & B x i X+ X%
Bob’s measurement 1 0010011000100
Retained bitsequence 1 - -100-100-1-0

Image reprinted from article: W. Tittel, G. Ribordy, and N. Gisin, "Quantum cryptography," Physics World, March 1998



Interferometric QKD channel
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Quantum cryptography at NTNU

Fiber optic QKD setup

Optimal tracking of phase drift

Single photon detector
with afterpulse blocking

Security against practical attacks
3. Large pulse attack: experiment

Faked states attack

5. Detector efficiency mismatch




QKD setup
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Photo 1. Alice (uncovered, no thermoisolation installed)
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Photo 2. Bob (uncovered, no thermoisolation installed)



Tracking phase drift

To get phase accuracy A¢ within ¥10° (QBER,,; ,,<1%),
no more than N, =~200 detector counts per adjustment
are required.

Optimally counted at +90° points from the extreme of the
interference curves. Exact required number of counts

2

2k’ 1
N =
“ A¢*|1-2(QBER)

b

where k is the number of standard deviations of not exceeding Ag.

J. Appl. Opt. 43, 4385 (2004)



Tracking phase drift

To get phase accuracy A¢ within ¥10° (QBER,,; ,,<1%),
no more than N, =~200 detector counts per adjustment
are required.

Experiment: adjustment every 3 s, N, = 230:
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J. Appl. Opt. 43, 4385 (2004)



Test of QKD in laboratory conditions
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Single photon detector:
avalanche photodiode in Geiger mode

Gate pulse
generator Bias
—Varp 4 t
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Afterpulse blocking

Varp ' L Hold-off time: N pulses are blocked —
( after detecting avalanche
Vg e B e e
t
Detector
output
t

In QKD systems, probability of detecting a photon per pulse is always
much lower than 1 (e.g., ~1/1000). This makes afterpulse blocking
efficient, allowing without much loss in detection probability:

® In our QKD system: 20 MHz gate pulse rate
® In principle: a few orders of magnitude faster gate pulse rate



Hardware implementation of
afterpulse blocking
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Count probability, %

Test of afterpulse blocking
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Quantum key distribution:
components of security

1 1
2 3
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1. Conventional security; trusted equipment manufacturer

2. Security against quantum attacks
— security proofs for idealized model of equipment

3. Loopholes in optical scheme
— imperfections not yet accounted in the proof

Allice |




Large pulse attack
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Eve’s equipment
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— interrogating Alice’s phase modulator with powerful

external pulses (can give Eve bit values directly)




Large pulse attack: experiment
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J. Mod. Opt. 48, 2023 (2001)
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Photo 3. Artem Vakhitov tunes up Eve’s setup



Faked states attack

Conventional intercept-resend.:

EVE

N—E S

ALARM!!!

Faked states attack:

EVE

M8l [Fs—Bl

(no alarm)

J. Mod. Opt. 52, 691 (2005)



Exploiting common imperfection:
detector gate misalignment

BOB

v

Phys. Rev. A 74, 022313 (2006)
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Detector gate misalignment

BOB

m//

Laser pulse from Alice

Phys. Rev. A 74, 022313 (2006)
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Detector gate misalignment

BOB

v

Phys. Rev. A 74, 022313 (2006)
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Detector gate misalignment
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Phys. Rev. A 74, 022313 (2006)
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Detector gate misalignment

Example: Eve measured with basis Z (90°), obtained bit 1

(Eve resends the opposite bit 0 in the opposite basis X, shifted in time)



Detector gate misalignment

Example: Eve measured with basis Z (90°), obtained bit 1

BOB
90°
e /" Eno

v Eve’s attack is not detected
v Eve obtains 100% information of the key




Detector efficiency

Partial efficiency mismatch

No(to)

N, (tp) —/

N, (t)
No(t))




Partial efficiency mismatch

A. Practical faked states attack:

~ P(error) 2n0(t1) + 21 (to)
QBER = parive)  Tolto) 1 3m0(tr) 1 3m(t0) + ()

= In the symmetric case (when n,(7,)/n,(¢,) = 11,(¢,)/1,(¢,)),
Eve causes less than 11% QBER if mismatch 1s larger than 1:15

B. General security bound (incomplete):

no
QBER = ~
" 1+nd—0 9,

where

o= o 5 2



Detector model 1.
Sensitivity curves

/\
\

VT
n
\
|

Normalized detector sensitivity, arb. u.



Detector model 2.
Sensitivity curves at low photon number u=0.5
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Detector efficiency mismatch

Detector efficiency mismatch is a problem for many
protocols and encodings: BB84 (considered above),
SARG04, phase-time, DPSK and Ekert protocols.

[quant-ph/0702262]

Control parameter t that changes detector efficiencies
shall not be necessarily timing; it can be, e.g., wavelength
or polarization.

The worst-case mismatch, no matter how small,
must be characterized and accounted for during
privacy amplification.



Conclusion

® A phase tracking technique and detector with afterpulse
blocking were successfully developed.
(QKD was demonstrated with a very limited success.)

@
o\

® Our group has built unique expertise in quantum
cryptanalysis of attacks via optical loopholes.
Several attacks have been proposed, studied in detail,
and protection measures suggested.



Possible future research

[
( (S
6K
® Continuing security studies beyond those presented in the
thesis; we have experimented with passively-quenched
Si APD; we are trying to incorporate detector efficiency

mismatch into general proof... With sufficient financing,
a study of high-power damage can be attempted.

® Improving the QKD experiment, demonstrating it over
at least ~20 km distance. Performance of detector
and phase tracking can be more accurately characterized.

® The QKD field is abound with novel ideas that can be tried...



Optional slides



Handling errors in raw key

R =1 -2 h(QBER)

0.11

QBER



Commercial offers (as of late 2006)

MagiQ Tecnologies
USA

id Quantique
Switzerland

Standard VPN router + QKD equipment for frequent key changes

Several other companies also have the QKD technology, but are not selling yet
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Photo 4. Bob (left) and Alice (right), thermoisolation partially installed
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(Eve’'s basis = Bob's basis)
s sufficient for eavesdropping

Eve’s Bob
basis det. result

X < ‘
Alice |

Incompatible basis —
¢ discarded by Alice and Bob during sifting




Security state of QKD system
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