Defence for the degree *doktor ingeniør* at the Norwegian University of Science and Technology, April 30, 2007

Quantum cryptography and quantum cryptanalysis

candidate: Vadim Makarov

SPbSPU St. Petersburg State Polytechnic University

Quantum cryptography timeline

ca. **1970** Concept ("money physically impossible to counterfeit")

1984 Key distribution protocol (BB84) 1989 **Proof-of-the-principle experiment** 1993 Key transmission over fiber optic link 2004 First commercial offers Market?

Key distribution

Secure channel

- Secret key cryptography requires secure channel for key distribution.
- Quantum cryptography distributes the key by transmitting quantum states in *open channel*.

Quantum key distribution

Interferometric QKD channel

Detector bases:

- $\varphi_{\rm B} = -45^{\circ} : X$
- $\varphi_{\rm B}$ = +45° : Z

- $\phi_{\rm A} = -45^{\circ} \text{ or } +45^{\circ} : 0$
- $\phi_{\rm A} = +135^{\circ} \text{ or } -135^{\circ}$: 1

5

Quantum cryptography at NTNU

Fiber optic QKD setup

- 1. Optimal tracking of phase drift
- 2. Single photon detector with afterpulse blocking

Security against practical attacks

- 3. Large pulse attack: experiment
- **4.** Faked states attack
- **5.** Detector efficiency mismatch

QKD setup

Photo 1. Alice (uncovered, no thermoisolation installed)

Photo 2. **Bob** (uncovered, no thermoisolation installed)

Tracking phase drift

To get phase accuracy $\Delta \varphi$ within ±10° (QBER_{opt $\Delta \varphi$} < 1%), no more than $N_a = \sim 200$ detector counts per adjustment are required.

Optimally counted at ±90° points from the extreme of the interference curves. Exact required number of counts

$$N_a = \frac{2k^2}{\Delta \varphi^2} \left(\frac{1}{1 - 2(\text{QBER})}\right)^2,$$

where *k* is the number of standard deviations of not exceeding $\Delta \varphi$.

J. Appl. Opt. 43, 4385 (2004)

Tracking phase drift

To get phase accuracy $\Delta \phi$ within ±10° (QBER_{opt $\Delta \phi$} < 1%), no more than $N_a = \sim 200$ detector counts per adjustment are required.

Experiment: adjustment every 3 s, N_a = 230:

J. Appl. Opt. **43**, 4385 (2004)

Test of QKD in laboratory conditions

Single photon detector: avalanche photodiode in Geiger mode

t_{gate} down to 1ns Gate pulse rate = 20 MHz

APD: Ge FD312L T=77K, QE=16%, DC=5·10⁻⁵

Afterpulse blocking

In QKD systems, probability of detecting a photon per pulse is always much lower than 1 (e.g., \sim 1/1000). This makes afterpulse blocking efficient, allowing without much loss in detection probability:

- In our QKD system: 20 MHz gate pulse rate
- In principle: a few orders of magnitude faster gate pulse rate

Hardware implementation of afterpulse blocking

Test of afterpulse blocking

16

Quantum key distribution: components of security

- 1. Conventional security; trusted equipment manufacturer
- 2. Security against quantum attacks
 - security proofs for idealized model of equipment

3. Loopholes in optical scheme

- imperfections not yet accounted in the proof

Large pulse attack

 interrogating Alice's phase modulator with powerful external pulses (can give Eve bit values directly)

Large pulse attack: experiment

19

Copyright 2000 Vadim.Makarov@fysel.ntnu.no

Photo 3. Artem Vakhitov tunes up Eve's setup

Faked states attack

Conventional intercept-resend:

Faked states attack:

J. Mod. Opt. 52, 691 (2005)

Exploiting common imperfection: detector gate misalignment

25

Example: Eve measured with basis Z (90°), obtained bit 1

(Eve resends the opposite bit 0 in the opposite basis X, shifted in time)

Example: Eve measured with basis Z (90°), obtained bit 1

Eve's attack is not detected
Eve obtains 100% information of the key

Partial efficiency mismatch

Partial efficiency mismatch

A. Practical faked states attack:

QBER =
$$\frac{P(\text{error})}{P(\text{arrive})} = \frac{2\eta_0(t_1) + 2\eta_1(t_0)}{\eta_0(t_0) + 3\eta_0(t_1) + 3\eta_1(t_0) + \eta_1(t_1)}$$

- ⇒ In the symmetric case (when $\eta_1(t_0)/\eta_0(t_0) = \eta_0(t_1)/\eta_1(t_1)$), Eve causes less than 11% QBER if mismatch is larger than 1:15
- **B.** General security bound (incomplete):

$$QBER = \frac{\eta \delta}{1 + \eta \delta - \delta} \approx \eta \delta,$$

where

$$\eta = \min\left\{\min_{t} \frac{\eta_1(t)}{\eta_0(t)}, \min_{t} \frac{\eta_0(t)}{\eta_1(t)}\right\}$$

Detector model 2. Sensitivity curves at low photon number μ =0.5

Detector efficiency mismatch

 Detector efficiency mismatch is a problem for many protocols and encodings: BB84 (considered above), SARG04, phase-time, DPSK and Ekert protocols.

[quant-ph/0702262]

- Control parameter t that changes detector efficiencies shall not be necessarily timing; it can be, e.g., wavelength or polarization.
- The worst-case mismatch, no matter how small, must be characterized and accounted for during privacy amplification.

Conclusion

 A phase tracking technique and detector with afterpulse blocking were successfully developed.
(QKD was demonstrated with a very limited success.)

 Our group has built unique expertise in quantum cryptanalysis of attacks via optical loopholes.
Several attacks have been proposed, studied in detail, and protection measures suggested.

Possible future research

- Continuing security studies beyond those presented in the thesis; we have experimented with passively-quenched Si APD; we are trying to incorporate detector efficiency mismatch into general proof... With sufficient financing, a study of high-power damage can be attempted.
- Improving the QKD experiment, demonstrating it over at least ~20 km distance. Performance of detector and phase tracking can be more accurately characterized.
- The QKD field is abound with novel ideas that can be tried...

Optional slides

Handling errors in raw key

Commercial offers (as of late 2006)

MagiQ Tecnologies USA

id Quantique Switzerland

Standard VPN router + QKD equipment for frequent key changes

Several other companies also have the QKD technology, but are not selling yet

©2001 Vadim Makarov www.vad1.com

Photo 4. Bob (left) and Alice (right), thermoisolation partially installed

Typical values of reflection coefficients for different fiber-optic components (courtesy Opto-Electronics, Inc.)

Security state of QKD system

