Insecurity of detector-device-independent quantum key distribution

 $|\psi|$

From mdi QKD to ddi QKD

Measurement device independent (mdi) QKD

ddi QKD ≠ mdi QKD

The state just before measurement:

$$\left| \frac{\sqrt{\mu}}{2} (e^{i\phi_E} + e^{i\varphi_B}) \right\rangle_{D_1} \otimes \left| \frac{\sqrt{\mu}}{2} (1 + e^{i(\phi_E + \varphi_B)}) \right\rangle_{D_2} \\ \otimes \left| \frac{\sqrt{\mu}}{2} (e^{i\phi_E} - e^{i\varphi_B}) \right\rangle_{D_3} \otimes \left| \frac{\sqrt{\mu}}{2} (1 - e^{i(\phi_E + \varphi_B)}) \right\rangle_{D_2}$$

Lets assume, only D1 is used?

Avoiding double clicks Strategy 1: Thresholds depend on blinding power

Shihan Sajeed^{1,2}

Anqi Huang^{1,2}

Shihai Sun³

Vadim Makarov^{5,1,2}

Marcos Curty⁶

Feihu Xu⁴

mdi QKD: secure ddi QKD: insecure

Features:

- Guaranteed security at the detection side
- Two-photon interference required
- Low key rate
- Difficult to implement

Detector device independent (ddi) QKD

Features:

- Alice and Bob Encode on the same photon
- No two-photon interference required
- higher key rate
- Easy to implement
- Pomise to provide mdi-QKD security

In this case: Eve can do a faked-state attack

Intensity at D1

 $\mu/2 < \mu_{\rm th} < \mu$

D1 output

Example of a ddi-QKD realization

fully characterized and trusted

D1 - D4 not characterized but trusted

Alice: $\frac{1}{\sqrt{2}}(|H\rangle + e^{i\theta_A}|V\rangle)$ Bob: $\frac{1}{\sqrt{2}}(|u\rangle + e^{i\varphi_B}|l\rangle)$

The security of ddi QKD cannot be based on post-selected entanglement

What about double clicks?

Full scheme with four detectors

(a) $\phi_{\rm E} = 0$ (b) $\phi_{\rm E} = \frac{\pi}{2}$

(c) $\phi_{\rm E} = \pi$ (d) $\phi_{\rm E} = \frac{3\pi}{2}$ $\varphi_{\rm B} | D_1 D_2 D_3 D_4 \varphi_{\rm B} | D_1 D_2 D_3 D_4$

Bell state: $|\Phi^{\pm}\rangle = \frac{1}{\sqrt{2}} (|H\rangle_p |u\rangle_s \pm |V\rangle_p |l\rangle_s)$ $|\Psi^{\pm}\rangle = \frac{1}{\sqrt{2}} (|H\rangle_p |l\rangle_s \pm |V\rangle_p |u\rangle_s)$

Detection:

A single click projects to a Bell state

Drawback: detector blinding attack produces double-clicks

Universidade Vigo

¹ Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1 Canada
² Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1 Canada
³ College of Science, National University of Defense Technology, Changsha 410073, China
⁴ Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
⁵ Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 Canada
⁶ Escuela de Ingeniería de Telecomunicación, Department of Signal Theory and Communications, University of Vigo, Vigo E-36310, Spain